Experimental aspects of jet physics in ep collisions

Brian Page

Brookhaven National Laboratory

CTEQ / POETIC 2016 – Temple University

Introduction

- Basics of jet finding in ep
- Example application: Accessing gluons with di-jets
- Limits of jet applicability: How low in transverse momentum can we go?

POETIC - 2016

Simulation Details / Particle Cuts

- Electron Proton events generated using PYTHIA
- Full energy eRHIC: 20 x 250 GeV (\sqrt{s} = 141 GeV)
- Cut on inelasticity: $0.01 \le y \le 0.95$
- Particles used in jet finding:
 - Stable
 - p_T ≥ 250 MeV
 - $\eta \le 4.5$
 - Parent cannot originate from scattered electron

POETIC - 2016

Subprocesses

Photon-Gluon Fusion & QCD-Compton

Jet Basics: Algorithm

- Parameters: Radius = 1, Min p_T = 1.0 GeV,
 Resolved Processes
- Look at number of jets in event and jet profile (amount of jet p_T in certain radius)
- k_T and anti-k_T show very similar behavior

- Many jet clustering algorithms available
- Compare k_T and anti-k_T (widely used at hadron colliders)
- Infrared and collinear safe at all orders

Jet Basics: Radius

Number of Jets in Event: Anti_kT Hard QCD

- For anti-k_T algorithm the radius parameter determines the distance at which particles can be grouped together
- Sets the effective size of the jet

- Parameters: Min $p_T = 1.0$ GeV, Resolved processes
- Larger radii result in more found jets as well as more particles in jet

Jet Multiplicity: $Q^2 = 0.01 - 0.1 \text{ GeV}^2$

Jets: PGF

Jets: QCDC

- Percentage of events with a certain number of found jets for different minimum allowed jet p_Ts
- See a decrease in number of jets with increasing minimum jet p_T
- Jet p_T of 1 GeV may not be well described theoretically
- Each curve normalized to unity

Jet Multiplicity: $Q^2 = 10 - 100 \text{ GeV}^2$

Jets: PGF

Jets: QCDC

- Same as above for higher Q² range
- Note the increase in percentage of events containing jets

Jet Particle Multiplicity

Number of Particles in Jet Vs Jet Pt

- No dependence on Q2 or subprocess
- How few particles can be in jet before it doesn't make sense to call the object a jet?

- Look at the average number of particles in jet as a function of jet p_T
- All stable particles (charged and neutral) are counted

Number of Particles in Jet Vs Jet Pt

Photon-Gluon Fusion

 Gluons can be probed in DIS via the higherorder photon gluon fusion process

Photon-Gluon Fusion

- Gluons can be probed in DIS via the higherorder photon gluon fusion process
- Also have the QCD Compton process which probes quarks at the same order

QCD – Compton

Photon-Gluon Fusion

- Gluons can be probed in DIS via the higherorder photon gluon fusion process
- Also have the QCD Compton process which probes quarks at the same order
- Both processes produce 2 angularly separated hard partons -> Di-jet

Resolved

- Gluons can be probed in DIS via the higherorder photon gluon fusion process
- Also have the QCD Compton process which probes quarks at the same order
- Both processes produce 2 angularly separated hard partons -> Di-jet
- At lower Q², resolved processes in which the photon assumes a hadronic structure begin to dominate
- Interested in the parton from the proton, would like to suppress the resolved component

Direct Vs Resolved Processes

$$X_{y} = \frac{1}{2E_{e}y} (p_{T1}e^{-\eta_{1}} + p_{T2}e^{-\eta_{2}})$$

14

POETIC - 2016

- To measure gluon, need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed

$$X_{q,g} = \frac{1}{2E_P} \left(p_{T1} e^{\eta_1} + p_{T2} e^{\eta_2} \right)$$

$$X_{q,g} = x_B \left(1 + \frac{M^2}{Q^2} \right)$$

- To measure gluon, need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed
- X_{q,g} is related to Bjorken-x and Q² at leading order

$$X_{q,g} = x_B \left(1 + \frac{M^2}{Q^2} \right)$$

$$Q^2 = syx_B$$

- To measure gluon, need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed
- X_{q,g} is related to Bjorken-x and Q² at leading order
- Q² and Bjorken-x are also related via the collision energy and inelasticity

$$X_{q,g} = x_B \left(1 + \frac{M^2}{Q^2} \right)$$

$$Q^2 = syx_B$$

$$X_{q,g} = x_B + \frac{M^2}{sy}$$

- To measure gluon, need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed
- X_{q,g} is related to Bjorken-x and Q² at leading order
- Q² and Bjorken-x are also related via the collision energy and inelasticity
- Accessible X_{q,g} range basically determined by beam energies

$$X_{q,g} = x_B \left(1 + \frac{M^2}{Q^2} \right)$$

$$Q^2 = syx_B$$

$$X_{q,g} = x_B + \underbrace{\left(\frac{M^2}{sy}\right)}$$

$$\approx \frac{100}{(20000 \times 0.95)} \approx 0.005$$

- To measure gluon, need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed
- X_{q,g} is related to Bjorken-x and Q² at leading order
- Q² and Bjorken-x are also related via the collision energy and inelasticity
- Accessible X_{q,g} range basically determined by beam energies
- Lowest $X_{q,g}$ we can probe is about 0.005

POETIC - 2016

X_{q,g} For Different Q²

Reco X Proton (X_Gamma > 0.7): Q2 = 10-100

Reco X Proton (X_Gamma > 0.7): Q2 = 0.01-0.1

Reco X Proton (X_Gamma > 0.7): Q2 = 1-10

- At lower Q², contribution from resolved process increases while QCD Compton contribution decreases
- For a given di-jet mass range, same X_{q,g}
 can be probed over large range of Q²

20

Can test evolution of gluons

POETIC - 2016

Accessing **\Delta G**

Several observables are sensitive to ΔG
in DIS but golden measurement at an EIC
would be scaling violation of g₁(x,Q²)

$$\frac{dg_1(x,Q^2)}{dln(Q^2)} \approx -\Delta g(x,Q^2)$$

- Current DIS constraints on ΔG hampered by limited x & Q² coverage
- EIC would greatly expand kinematic reach and precision of g₁(x,Q²) measurements!

arXiv:1206.6014

Accessing \(\Delta G \)

How Low Can We Go?

Select di-jets by finding two highest p_T jets in event and requiring they be separated in azimuth

Matching Fractions: Q² = 0.01-0.1 GeV

"UnMatched Event"

Jet p _T Ranges	% of PGF / Resolved Events Captured	Of Captured: % PGF / Resolved Matched
Hi Jet > 5 GeV && Lo Jet > 4 GeV	1% / <1%	87% / 83%
Hi Jet < 5 GeV Lo Jet < 4 GeV	25% / 19%	70% / 69%

Matching Fractions: Q² = 10-100 GeV

"UnMatched Event"

Jet p _T Ranges	% of PGF / Resolved Events Captured	Of Captured: % PGF / Resolved Matched
Hi Jet > 5 GeV && Lo Jet > 4 GeV	35% / 11%	91% / 91%
Hi Jet < 5 GeV Lo Jet < 4 GeV	60% / 44%	83% / 73%

PGF ΔR : $Q^2 = 0.01 - 0.1 \text{ GeV}^2$

$$\Delta R = \sqrt{(y_{part} - y_{jet})^2 + (\varphi_{part} - \varphi_{jet})^2}$$

- For matched events, plot ΔR for both jets
- Do this for high and low p_T jets separately
- See that ΔR values are somewhat larger for low p_T jets indicates poorer matching

POETIC - 2016

PGF ΔR : $Q^2 = 10 - 100 \text{ GeV}^2$

$$\Delta R = \sqrt{(y_{part} - y_{jet})^2 + (\varphi_{part} - \varphi_{jet})^2}$$

- The difference in ΔR behavior between low and high jet p_T is much greater at lower values of Q^2
- Similar results seen for other subprocesses

X_v Reproduction: $Q^2 = 10 - 100 \text{ GeV}^2$

- How does the reproduction of X_{γ} depend on jet p_{T} ?
- As expected unmatched events do not reproduce X_v well
- See that high p_T range is more peaked toward 1 even for matched events

Conclusions

• Basic jet parameters: Larger radius leads to more jets and more particles in jet, higher p_T jets have more particles but lower multiplicity. Not much dependence on jet algorithm

 Di-jet measurements from photon-gluon fusion subprocess will provide important cross check to gluon polarization measurements from g₁ scaling violations

• Correlation between jet and parton breaks down as jet p_T decreases meaning higher p_T jets are better for reconstructing the initial kinematics

Backup

Jet Particle Mult: $Q^2 = 0.01 - 0.1 \text{ GeV}^2$

Jet Particles: PGF

Jet Particles: QCDC

- Same as previous slide but for lower Q² range
- Median numbers of particles stay roughly the same as higher Q² case but frequency of jets with high number of particles down sharply

Jet Particle Mult: $Q^2 = 10 - 100 \text{ GeV}^2$

Jet Particles: PGF

Jet Particles: QCDC

- Number of particles in a jet for 3 minimum jet p_T values
- Increase in minimum jet p_T leads to increase in average number of particles in jet
- Higher p_T jets -> more "jet like" than "single particle like"

32

Jet Basics: Frames

- Can define several useful frames:
 - Lab: Detector-based frame
 - Hadron-Boson: Beam hadron is at rest, z-direction chosen along virtual photon momentum vector
 - Breit: Virtual photon moves in -z direction and boost such that it has zero energy. Separation into target and remnant regions
 - Center of Mass: Virtual photon and struck parton have equal and opposite momenta. Can define Feynman-x

Di-jet A_{II} (pp)

Coincidence
 measurements capture
 more information about
 hard scatter and better
 constrain initial kinematics

Di-jet A_{II} (pp)

- Coincidence
 measurements capture
 more information about
 hard scatter and better
 constrain initial kinematics
- Di-jet A_{LL} plotted vs M_{inv}/\sqrt{s} ($\sqrt[\infty]{x_1x_2}$ at L.O.) for data taken at \sqrt{s} = 200 and 510 GeV
- 510 GeV data extend to lower M_{inv}/\sqrt{s} (lower x) where ΔG not as well constrained while 200 GeV data give better precision at mid to high M_{inv}/\sqrt{s}

Di-jet Invariant Mass

Di-jet Mass: $Q^2 = 10-100$

Subprocess Ratio Vs Mass: Q2 = 10-100

Di-jet Mass: $Q^2 = 10-100$

- See that the cut on X_γ significantly reduces the resolved contribution while maintaining the direct events
- Separation between resolved and direct is most prominent at high Q² and low di-jet invariant mass

X_{q,g} Vs Mass

 $Q^2 = 10 - 100 \text{ GeV/c}^2$

- As shown on the previous slide, accessible X_{q,g} range is determined largely by beam energy
- Different di-jet mass ranges select different process fractions with lower masses containing less resolved contribution
- Selection of high mass events also cut out low X_{q,g} contribution

Partonic Matching: Shape Comparison

Partonic Matching: PGF Q2 = 0.01 - 0.1

Partonic Matching: PGF Q2 = 10 - 100

Delta R

X_v Reproduction: $Q^2 = 0.01 - 0.1$ GeV²

Reconstructed X_Gamma: Matched Hi / Lo

